Andrew Hipp

Research Summary
Research: Plant systematics and population genetics, chromosome evolution, phylogenetic and comparative analysis
Biosciences Graduate Program Association
Publications
  1. Niche evolution in a northern temperate tree lineage: biogeographical legacies in cork oaks (Quercus section Cerris). Ann Bot. 2023 05 15; 131(5):769-787. View in: PubMed

  2. Tree species and genetic diversity increase productivity via functional diversity and trophic feedbacks. Elife. 2022 Nov 29; 11. View in: PubMed

  3. Addressing inconsistencies in Cyperaceae and Juncaceae taxonomy: Comment on Bro?ov? et al. (2022). Mol Phylogenet Evol. 2023 02; 179:107665. View in: PubMed

  4. A snapshot of progenitor-derivative speciation in Iberodes (Boraginaceae). Mol Ecol. 2022 06; 31(11):3192-3209. View in: PubMed

  5. Phylogenetic distance and resource availability mediate direction and strength of plant interactions in a competition experiment. Oecologia. 2021 Oct; 197(2):459-469. View in: PubMed

  6. Leaf shape and size variation in bur oaks: an empirical study and simulation of sampling strategies. Am J Bot. 2021 08; 108(8):1540-1554. View in: PubMed

  7. Climate and phylogenetic history structure morphological and architectural trait variation among fine-root orders. New Phytol. 2020 12; 228(6):1824-1834. View in: PubMed

  8. Taxonomic similarity does not predict necessary sample size for ex situ conservation: a comparison among five genera. Proc Biol Sci. 2020 05 13; 287(1926):20200102. View in: PubMed

  9. Tackling Rapid Radiations With Targeted Sequencing. Front Plant Sci. 2019; 10:1655. View in: PubMed

  10. TRY plant trait database - enhanced coverage and open access. Glob Chang Biol. 2020 01; 26(1):119-188. View in: PubMed

  11. Ancient events and climate adaptive capacity shaped distinct chloroplast genetic structure in the oak lineages. BMC Evol Biol. 2019 11 04; 19(1):202. View in: PubMed

  12. Oaks: an evolutionary success story. New Phytol. 2020 05; 226(4):987-1011. View in: PubMed

  13. Genomic landscape of the global oak phylogeny. New Phytol. 2020 05; 226(4):1198-1212. View in: PubMed

  14. Timing and ecological priority shaped the diversification of sedges in the Himalayas. PeerJ. 2019; 7:e6792. View in: PubMed

  15. Uncovering the genomic signature of ancient introgression between white oak lineages (Quercus). New Phytol. 2020 05; 226(4):1158-1170. View in: PubMed

  16. A nuclear DNA barcode for eastern North American oaks and application to a study of hybridization in an Arboretum setting. Ecol Evol. 2018 Jun; 8(11):5837-5851. View in: PubMed

  17. The evolution and diversification of the red oaks of the California Floristic Province (Quercus section Lobatae, series Agrifoliae). Am J Bot. 2017 10; 104(10):1581-1595. View in: PubMed

  18. The role of diversification in community assembly of the oaks (Quercus L.) across the continental U.S. Am J Bot. 2018 03; 105(3):565-586. View in: PubMed

  19. Gaining a global perspective on Fagaceae genomic diversification and adaptation. New Phytol. 2018 05; 218(3):894-897. View in: PubMed

  20. RAD-seq linkage mapping and patterns of segregation distortion in sedges: meiosis as a driver of karyotypic evolution in organisms with holocentric chromosomes. J Evol Biol. 2018 06; 31(6):833-843. View in: PubMed

  21. Phylogeny and biogeography of East Asian evergreen oaks (Quercus section Cyclobalanopsis; Fagaceae): Insights into the Cenozoic history of evergreen broad-leaved forests in subtropical Asia. Mol Phylogenet Evol. 2018 02; 119:170-181. View in: PubMed

  22. Sympatric parallel diversification of major oak clades in the Americas and the origins of Mexican species diversity. New Phytol. 2018 Jan; 217(1):439-452. View in: PubMed

  23. The Evolution of Tree Diversity: Proceedings of the 2016 IUFRO Genomics and Forest Tree Genetics Conference, Phylogenetics and Genomic Evolution Session, Arcachon, France. Genome. 2017 09; 60(9):v-vi. View in: PubMed

  24. Floristic response to urbanization: Filtering of the bioregional flora in Indianapolis, Indiana, USA. Am J Bot. 2017 Aug; 104(8):1179-1187. View in: PubMed

  25. Allopatric speciation despite historical gene flow: Divergence and hybridization in Carex furva and C.?lucennoiberica (Cyperaceae) inferred from plastid and nuclear RAD-seq data. Mol Ecol. 2017 Oct; 26(20):5646-5662. View in: PubMed

  26. Phylogenomics reveals a complex evolutionary history of lobed-leaf white oaks in western North America. Genome. 2017 Sep; 60(9):733-742. View in: PubMed

  27. A genetic legacy of introgression confounds phylogeny and biogeography in oaks. Proc Biol Sci. 2017 May 17; 284(1854). View in: PubMed

  28. A time and a place for everything: phylogenetic history and geography as joint predictors of oak plastome phylogeny. Genome. 2017 Sep; 60(9):720-732. View in: PubMed

  29. Phylogenomic inferences from reference-mapped and de novo assembled short-read sequence data using RADseq sequencing of California white oaks (Quercus section Quercus). Genome. 2017 Sep; 60(9):743-755. View in: PubMed

  30. Chromosomal rearrangements in holocentric organisms lead to reproductive isolation by hybrid dysfunction: The correlation between karyotype rearrangements and germination rates in sedges. Am J Bot. 2016 08; 103(8):1529-36. View in: PubMed

  31. Keeping All the PIECES: Phylogenetically Informed Ex Situ Conservation of Endangered Species. PLoS One. 2016; 11(6):e0156973. View in: PubMed

  32. Historical introgression among the American live oaks and the comparative nature of tests for introgression. Evolution. 2015 Oct; 69(10):2587-601. View in: PubMed

  33. Phylogeny, systematics, and trait evolution of Carex section Glareosae. Am J Bot. 2015 Jul; 102(7):1128-44. View in: PubMed

  34. Phylogeny in the service of ecological restoration. Am J Bot. 2015 May; 102(5):647-8. View in: PubMed

  35. Native plant diversity increases herbivory to non-natives. Proc Biol Sci. 2014 11 07; 281(1794):20141841. View in: PubMed

  36. Genotyping-by-sequencing as a tool to infer phylogeny and ancestral hybridization: a case study in Carex (Cyperaceae). Mol Phylogenet Evol. 2014 Oct; 79:359-67. View in: PubMed

  37. White-tailed deer are a biotic filter during community assembly, reducing species and phylogenetic diversity. AoB Plants. 2014 Jun 09; 6. View in: PubMed

  38. A framework phylogeny of the American oak clade based on sequenced RAD data. PLoS One. 2014; 9(4):e93975. View in: PubMed

  39. Karyotypic changes through dysploidy persist longer over evolutionary time than polyploid changes. PLoS One. 2014; 9(1):e85266. View in: PubMed

  40. Shifts in diversification rates and clade ages explain species richness in higher-level sedge taxa (Cyperaceae). Am J Bot. 2013 Dec; 100(12):2403-11. View in: PubMed

  41. Species coherence in the face of karyotype diversification in holocentric organisms: the case of a cytogenetically variable sedge (Carex scoparia, Cyperaceae). Ann Bot. 2013 Aug; 112(3):515-26. View in: PubMed

  42. Chromosome number evolves independently of genome size in a clade with nonlocalized centromeres (Carex: Cyperaceae). Evolution. 2012 Sep; 66(9):2708-22. View in: PubMed

  43. Global patterns of leaf defenses in oak species. Evolution. 2012 Jul; 66(7):2272-86. View in: PubMed

  44. Selection and inertia in the evolution of holocentric chromosomes in sedges (Carex, Cyperaceae). New Phytol. 2012 Jul; 195(1):237-47. View in: PubMed

  45. Diversification rates and chromosome evolution in the most diverse angiosperm genus of the temperate zone (Carex, Cyperaceae). Mol Phylogenet Evol. 2012 Jun; 63(3):650-5. View in: PubMed

  46. A novel comparative method for identifying shifts in the rate of character evolution on trees. Evolution. 2011 Dec; 65(12):3578-89. View in: PubMed

  47. Molecular phylogenetics of the giant genus Croton and tribe Crotoneae (Euphorbiaceae sensu stricto) using ITS and TRNL-TRNF DNA sequence data. Am J Bot. 2005 Sep; 92(9):1520-34. View in: PubMed

  48. Dynamics of chromosome number and genome size variation in a cytogenetically variable sedge (Carex scoparia var. scoparia, Cyperaceae). Am J Bot. 2011 Jan; 98(1):122-9. View in: PubMed

  49. Isolation of 11 polymorphic tri- and tetranucleotide microsatellite loci in a North American sedge (Carex scoparia: Cyperaceae) and cross-species amplification in three additional Carex species. Mol Ecol Resour. 2009 Mar; 9(2):625-7. View in: PubMed

  50. Karyotype stability and predictors of chromosome number variation in sedges: a study in Carex section Spirostachyae (Cyperaceae). Mol Phylogenet Evol. 2010 Oct; 57(1):353-63. View in: PubMed

  51. Chromosomes tell half of the story: the correlation between karyotype rearrangements and genetic diversity in sedges, a group with holocentric chromosomes. Mol Ecol. 2010 Aug; 19(15):3124-38. View in: PubMed

  52. MATICCE: mapping transitions in continuous character evolution. Bioinformatics. 2010 Jan 01; 26(1):132-3. View in: PubMed

  53. Accelerated evolutionary rates in tropical and oceanic parmelioid lichens (Ascomycota). BMC Evol Biol. 2008 Sep 22; 8:257. View in: PubMed

  54. Nonuniform processes of chromosome evolution in sedges (Carex: Cyperaceae). Evolution. 2007 Sep; 61(9):2175-94. View in: PubMed

  55. A Bayesian model of AFLP marker evolution and phylogenetic inference. Stat Appl Genet Mol Biol. 2007; 6:Article11. View in: PubMed

  56. Phylogeny and biogeography of Croton alabamensis (Euphorbiaceae), a rare shrub from Texas and Alabama, using DNA sequence and AFLP data. Mol Ecol. 2006 Sep; 15(10):2735-51. View in: PubMed