Marcus R. Kronforst

Research Summary
We study adaptation and speciation, with a special focus on the genetic basis of wing pattern mimicry in butterflies. Other topics of study in the lab include mate preference evolution in butterflies, monarch butterfly migration, and poison dart frog color patterning. Our work is highly integrative, spanning genomics, population genetics, molecular and developmental biology, animal behavior, and field work.
adaptation, speciation, evolutionary genomics, population genetics
  • University of Miami, Miami, Florida, B.S. Biology 1998
  • University of Texas, Austin, Texas, Ph.D. Ecology, Evolution & Behavior 2004
  • University of Texas, Austin, Texas, post-doc Evolutionary Biology 2007
  • Harvard University, Cambridge, Massachusetts, Bauer Fellow Systems Biology 2012
Awards & Honors
  • 1997 - Phi Beta Kappa Honor Society University of Miami
  • 1998 - Summa cum laude University of Miami
  • 2002 - NSF Doctoral Dissertation Improvement Grant
  • 2007 - 2012 Bauer Fellows Program Harvard University
  • 2012 - 2017 Neubauer Family Endowed Assistant Professorship University of Chicago
  • 2015 - 2020 Pew Biomedical Scholar University of Chicago
  • 2015 - NSF CAREER Award University of Chicago
  • 2016 - Biological Sciences Division Distinguished Investigator Award University of Chicago
  1. Seasonal plasticity in morphology and metabolism differs between migratory North American and resident Costa Rican monarch butterflies. Ecol Evol. 2023 Feb; 13(2):e9796. View in: PubMed

  2. Butterfly mimicry rings run in circles. Proc Natl Acad Sci U S A. 2023 01 24; 120(4):e2220680120. View in: PubMed

  3. Museum genomics reveals the Xerces blue butterfly (Glaucopsyche xerces) was a distinct species driven to extinction. Biol Lett. 2021 07; 17(7):20210123. View in: PubMed

  4. Behaviour before beauty: signal weighting during mate selection in the butterfly Papilio polytes. Ethology. 2019 Aug; 125(8):565-574. View in: PubMed

  5. The evolution and genetics of sexually dimorphic 'dual' mimicry in the butterfly Elymnias hypermnestra. Proc Biol Sci. 2021 01 13; 288(1942):20202192. View in: PubMed

  6. Divergence, gene flow, and the origin of leapfrog geographic distributions: The history of colour pattern variation in Phyllobates poison-dart frogs. Mol Ecol. 2020 10; 29(19):3702-3719. View in: PubMed

  7. Migration behaviour of commercial monarchs reared outdoors and wild-derived monarchs reared indoors. Proc Biol Sci. 2020 08 12; 287(1932):20201326. View in: PubMed

  8. The roles of hybridization and habitat fragmentation in the evolution of Brazil's enigmatic longwing butterflies, Heliconius nattereri and H. hermathena. BMC Biol. 2020 07 03; 18(1):84. View in: PubMed

  9. Genomic evidence for gene flow between monarchs with divergent migratory phenotypes and flight performance. Mol Ecol. 2020 07; 29(14):2567-2582. View in: PubMed

  10. Disentangling Population History and Character Evolution among Hybridizing Lineages. Mol Biol Evol. 2020 05 01; 37(5):1295-1305. View in: PubMed

  11. A shared genetic basis of mimicry across swallowtail butterflies points to ancestral co-option of doublesex. Nat Commun. 2020 01 03; 11(1):6. View in: PubMed

  12. Genomic architecture and introgression shape a butterfly radiation. Science. 2019 11 01; 366(6465):594-599. View in: PubMed

  13. Comparative Transcriptomics Provides Insights into Reticulate and Adaptive Evolution of a Butterfly Radiation. Genome Biol Evol. 2019 10 01; 11(10):2963-2975. View in: PubMed

  14. Butterfly Mimicry Polymorphisms Highlight Phylogenetic Limits of Gene Reuse in the Evolution of Diverse Adaptations. Mol Biol Evol. 2019 12 01; 36(12):2842-2853. View in: PubMed

  15. Monarch butterflies use an environmentally sensitive, internal timer to control overwintering dynamics. Mol Ecol. 2019 08; 28(16):3642-3655. View in: PubMed

  16. Contemporary loss of migration in monarch butterflies. Proc Natl Acad Sci U S A. 2019 07 16; 116(29):14671-14676. View in: PubMed

  17. Female mate choice is a reproductive isolating barrier in Heliconius butterflies. Ethology. 2018 Dec; 124(12):862-869. View in: PubMed

  18. Genomic Takeover by Transposable Elements in the Strawberry Poison Frog. Mol Biol Evol. 2018 12 01; 35(12):2913-2927. View in: PubMed

  19. Aristaless Controls Butterfly Wing Color Variation Used in Mimicry and Mate Choice. Curr Biol. 2018 11 05; 28(21):3469-3474.e4. View in: PubMed

  20. Experimental field tests of Batesian mimicry in the swallowtail butterfly Papilio polytes. Ecol Evol. 2018 Aug; 8(15):7657-7666. View in: PubMed

  21. The molecular genetic basis of herbivory between butterflies and their host plants. Nat Ecol Evol. 2018 09; 2(9):1418-1427. View in: PubMed

  22. Transitions from Single- to Multi-Locus Processes during Speciation with Gene Flow. Genes (Basel). 2018 May 24; 9(6). View in: PubMed

  23. Frequency dependence shapes the adaptive landscape of imperfect Batesian mimicry. Proc Biol Sci. 2018 04 11; 285(1876). View in: PubMed

  24. Subtle variation in size and shape of the whole forewing and the red band among co-mimics revealed by geometric morphometric analysis in Heliconius butterflies. Ecol Evol. 2018 03; 8(6):3280-3295. View in: PubMed

  25. Does male preference play a role in maintaining female limited polymorphism in a Batesian mimetic butterfly? Behav Processes. 2018 May; 150:47-58. View in: PubMed

  26. Tracing the origin and evolution of supergene mimicry in butterflies. Nat Commun. 2017 11 07; 8(1):1269. View in: PubMed

  27. Macroevolutionary shifts of WntA function potentiate butterfly wing-pattern diversity. Proc Natl Acad Sci U S A. 2017 10 03; 114(40):10701-10706. View in: PubMed

  28. A neutral view of the evolving genomic architecture of speciation. Ecol Evol. 2017 08; 7(16):6358-6366. View in: PubMed

  29. Genome-wide introgression among distantly related Heliconius butterfly species. Genome Biol. 2016 Feb 27; 17:25. View in: PubMed

  30. Outbred genome sequencing and CRISPR/Cas9 gene editing in butterflies. Nat Commun. 2015 Sep 10; 6:8212. View in: PubMed

  31. Divergence and gene flow among Darwin's finches: A genome-wide view of adaptive radiation driven by interspecies allele sharing. Bioessays. 2015 Sep; 37(9):968-74. View in: PubMed

  32. The functional basis of wing patterning in Heliconius butterflies: the molecules behind mimicry. Genetics. 2015 May; 200(1):1-19. View in: PubMed

  33. Exploring the molecular basis of monarch butterfly color pattern variation: a response to A. Hume's 'Myosin--a monarch of pigment transport?'. Pigment Cell Melanoma Res. 2015 Mar; 28(2):127-30. View in: PubMed

  34. Serial founder effects and genetic differentiation during worldwide range expansion of monarch butterflies. Proc Biol Sci. 2014 12 22; 281(1797). View in: PubMed

  35. Diversification of the silverspot butterflies (Nymphalidae) in the Neotropics inferred from multi-locus DNA sequences. Mol Phylogenet Evol. 2015 Jan; 82 Pt A:156-65. View in: PubMed

  36. The genetics of monarch butterfly migration and warning colouration. Nature. 2014 Oct 16; 514(7522):317-21. View in: PubMed

  37. Ancient homology underlies adaptive mimetic diversity across butterflies. Nat Commun. 2014 Sep 08; 5:4817. View in: PubMed

  38. Phylogeography of Heliconius cydno and its closest relatives: disentangling their origin and diversification. Mol Ecol. 2014 Aug; 23(16):4137-52. View in: PubMed

  39. doublesex is a mimicry supergene. Nature. 2014 Mar 13; 507(7491):229-32. View in: PubMed

  40. Hybridization reveals the evolving genomic architecture of speciation. Cell Rep. 2013 Nov 14; 5(3):666-77. View in: PubMed

  41. Do Heliconius butterfly species exchange mimicry alleles? Biol Lett. 2013 Aug 23; 9(4):20130503. View in: PubMed

  42. Genome-wide characterization of adaptation and speciation in tiger swallowtail butterflies using de novo transcriptome assemblies. Genome Biol Evol. 2013; 5(6):1233-45. View in: PubMed

  43. Cryptic genetic and wing pattern diversity in a mimetic Heliconius butterfly. Mol Ecol. 2013 May; 22(10):2760-70. View in: PubMed

  44. Diversification of complex butterfly wing patterns by repeated regulatory evolution of a Wnt ligand. Proc Natl Acad Sci U S A. 2012 Jul 31; 109(31):12632-7. View in: PubMed

  45. Mimetic butterflies introgress to impress. PLoS Genet. 2012; 8(6):e1002802. View in: PubMed

  46. Unraveling the thread of nature's tapestry: the genetics of diversity and convergence in animal pigmentation. Pigment Cell Melanoma Res. 2012 Jul; 25(4):411-33. View in: PubMed

  47. Wing patterning gene redefines the mimetic history of Heliconius butterflies. Proc Natl Acad Sci U S A. 2011 Dec 06; 108(49):19666-71. View in: PubMed

  48. Sex chromosome mosaicism and hybrid speciation among tiger swallowtail butterflies. PLoS Genet. 2011 Sep; 7(9):e1002274. View in: PubMed

  49. optix drives the repeated convergent evolution of butterfly wing pattern mimicry. Science. 2011 Aug 26; 333(6046):1137-41. View in: PubMed

  50. Genetic diversity in the social amoeba Dictyostelium discoideum: population differentiation and cryptic species. Mol Phylogenet Evol. 2011 Sep; 60(3):455-62. View in: PubMed

  51. Mate preference across the speciation continuum in a clade of mimetic butterflies. Evolution. 2011 May; 65(5):1489-500. View in: PubMed

  52. Comparative population genetics of a mimicry locus among hybridizing Heliconius butterfly species. Heredity (Edinb). 2011 Sep; 107(3):200-4. View in: PubMed

  53. Comparative population genetics of mimetic Heliconius butterflies in an endangered habitat; Brazil's Atlantic Forest. BMC Genet. 2011 Jan 20; 12:9. View in: PubMed

  54. Dissecting comimetic radiations in Heliconius reveals divergent histories of convergent butterflies. Proc Natl Acad Sci U S A. 2010 Apr 20; 107(16):7365-70. View in: PubMed

  55. Genomic hotspots for adaptation: the population genetics of M?llerian mimicry in the Heliconius melpomene clade. PLoS Genet. 2010 Feb 05; 6(2):e1000794. View in: PubMed

  56. Phylogeography and sexual macrocyst formation in the social amoeba Dictyostelium giganteum. BMC Evol Biol. 2010 Jan 20; 10:17. View in: PubMed

  57. Polymorphic butterfly reveals the missing link in ecological speciation. Science. 2009 Nov 06; 326(5954):847-50. View in: PubMed

  58. Phylogeny, reproductive isolation and kin recognition in the social amoeba Dictyostelium purpureum. Evolution. 2009 Feb; 63(2):542-8. View in: PubMed

  59. Gene flow and the genealogical history of Heliconius heurippa. BMC Evol Biol. 2008 May 02; 8:132. View in: PubMed

  60. DNA methylation is widespread across social Hymenoptera. Curr Biol. 2008 Apr 08; 18(7):R287-8. View in: PubMed

  61. Gene flow persists millions of years after speciation in Heliconius butterflies. BMC Evol Biol. 2008 Mar 27; 8:98. View in: PubMed

  62. The population genetics of mimetic diversity in Heliconius butterflies. Proc Biol Sci. 2008 Mar 07; 275(1634):493-500. View in: PubMed

  63. No genomic mosaicism in a putative hybrid butterfly species. Proc Biol Sci. 2007 May 22; 274(1615):1255-64. View in: PubMed

  64. Reinforcement of mate preference among hybridizing Heliconius butterflies. J Evol Biol. 2007 Jan; 20(1):278-85. View in: PubMed

  65. Genetic differentiation between body size biotypes of the parasitoid fly Pseudacteon obtusus (Diptera: Phoridae). Mol Phylogenet Evol. 2007 Jun; 43(3):1178-84. View in: PubMed

  66. Multilocus analyses of admixture and introgression among hybridizing Heliconius butterflies. Evolution. 2006 Jun; 60(6):1254-68. View in: PubMed

  67. Parallel genetic architecture of parallel adaptive radiations in mimetic Heliconius butterflies. Genetics. 2006 Sep; 174(1):535-9. View in: PubMed

  68. Linkage of butterfly mate preference and wing color preference cue at the genomic location of wingless. Proc Natl Acad Sci U S A. 2006 Apr 25; 103(17):6575-80. View in: PubMed

  69. Lack of genetic differentiation among widely spaced subpopulations of a butterfly with home range behaviour. Heredity (Edinb). 2001 Feb; 86(Pt 2):243-50. View in: PubMed

  70. Effectiveness of DNA barcoding in Speyeria butterflies at small geographic scales. Diversity. 2018; 10:130.::::

  71. Female mate choice is a reproductive isolating barrier in Heliconius butterflies. Ethology. 2018; 124(12):862-869.::::

  72. Butterfly genome reveals promiscuous exchange of mimicry adaptations among species. Nature. 2012; 487(7405):94-8.::::

  73. Unraveling the mysteries of monarch migration and global dispersal through molecular genetic techniques. In: Monarchs in a Changing World: Biology and Conservation of an Iconic Insect. Cornell University Press. 2015.::::

  74. Species boundaries in Philaethria butterflies: an integrative taxonomic analysis based on genitalia ultrastructure, wing geometric morphometrics, DNA sequences, and amplified fragment length polymorphisms. Zool J Linnean Soc. 2014; 170(4):690-709.::::

  75. Development of a microsatellite library for the passion flower butterfly Dione moneta Hübner (Lepidoptera: Nymphalidae: Heliconiinae). Conserv. Genet. Resour. 2012; 4(3):719-724.::::

  76. Primers for the amplification of nuclear introns in Heliconius butterflies. Mol Ecol Notes. 2004; 5(1):158-162.::::