Richard Ree

Research Summary
Research: Flowering plant evolution and systematics, phylogenetic and macroevolutionary theory, biodiversity informatics
Biosciences Graduate Program Association
  1. Pervasive hybridization during evolutionary radiation of Rhododendron subgenus Hymenanthes in mountains of southwest China. Natl Sci Rev. 2022 Dec; 9(12):nwac276. View in: PubMed

  2. Reading light: leaf spectra capture fine-scale diversity of closely related, hybridizing arctic shrubs. New Phytol. 2021 12; 232(6):2283-2294. View in: PubMed

  3. Sedimentary ancient DNA reveals a threat of warming-induced alpine habitat loss to Tibetan Plateau plant diversity. Nat Commun. 2021 05 20; 12(1):2995. View in: PubMed

  4. Fossil-Informed Models Reveal a Boreotropical Origin and Divergent Evolutionary Trajectories in the Walnut Family (Juglandaceae). Syst Biol. 2021 12 16; 71(1):242-258. View in: PubMed

  5. Grade of Membership models reveal geographical and environmental correlates of floristic structure in a temperate biodiversity hotspot. New Phytol. 2021 11; 232(3):1424-1435. View in: PubMed

  6. The Origins of Coca: Museum Genomics Reveals Multiple Independent Domestications from Progenitor Erythroxylum gracilipes. Syst Biol. 2021 01 01; 70(1):1-13. View in: PubMed

  7. The macroevolutionary dynamics of symbiotic and phenotypic diversification in lichens. Proc Natl Acad Sci U S A. 2020 09 01; 117(35):21495-21503. View in: PubMed

  8. Ancient orogenic and monsoon-driven assembly of the world's richest temperate alpine flora. Science. 2020 07 31; 369(6503):578-581. View in: PubMed

  9. No support for the emergence of lichens prior to the evolution of vascular plants. Geobiology. 2020 01; 18(1):3-13. View in: PubMed

  10. Ant-plant interactions evolved through increasing interdependence. Proc Natl Acad Sci U S A. 2018 11 27; 115(48):12253-12258. View in: PubMed

  11. Accelerated diversification and functional trait evolution in Velloziaceae reveal new insights into the origins of the campos rupestres' exceptional floristic richness. Ann Bot. 2018 06 28; 122(1):165-180. View in: PubMed

  12. Uplift-driven diversification in the Hengduan Mountains, a temperate biodiversity hotspot. Proc Natl Acad Sci U S A. 2017 04 25; 114(17):E3444-E3451. View in: PubMed

  13. Global biogeography of mating system variation in seed plants. Ecol Lett. 2017 Mar; 20(3):375-384. View in: PubMed

  14. Synthesis of phylogeny and taxonomy into a comprehensive tree of life. Proc Natl Acad Sci U S A. 2015 Oct 13; 112(41):12764-9. View in: PubMed

  15. Towards a comprehensive phylogeny of the large temperate genus Pedicularis (Orobanchaceae), with an emphasis on species from the Himalaya-Hengduan Mountains. BMC Plant Biol. 2015 Jul 11; 15:176. View in: PubMed

  16. Integrating fossils, phylogenies, and niche models into biogeography to reveal ancient evolutionary history: the case of Hypericum (hypericaceae). Syst Biol. 2015 Mar; 64(2):215-32. View in: PubMed

  17. Temperate origins of long-distance seasonal migration in New World songbirds. Proc Natl Acad Sci U S A. 2014 Aug 19; 111(33):12115-20. View in: PubMed

  18. High mountain origin, phylogenetics, evolution, and niche conservatism of arctic lineages in the hemiparasitic genus Pedicularis (Orobanchaceae). Mol Phylogenet Evol. 2014 Jul; 76:75-92. View in: PubMed

  19. The effect of phylogeny, environment and morphology on communities of a lianescent clade (Bignonieae-Bignoniaceae) in Neotropical biomes. PLoS One. 2014; 9(3):e90177. View in: PubMed

  20. New finding of an anti-TB compound in the genus Marsypopetalum (Annonaceae) from a traditional herbal remedy of Laos. J Ethnopharmacol. 2014 Feb 03; 151(2):903-11. View in: PubMed

  21. Inferring phylogeny and introgression using RADseq data: an example from flowering plants (Pedicularis: Orobanchaceae). Syst Biol. 2013 Sep; 62(5):689-706. View in: PubMed

  22. Inferring phylogenies from RAD sequence data. PLoS One. 2012; 7(4):e33394. View in: PubMed

  23. Analysis of inbreeding depression in mixed-mating plants provides evidence for selective interference and stable mixed mating. Evolution. 2011 Dec; 65(12):3339-59. View in: PubMed

  24. Phylogenetic evidence for a flower size and number trade-off. Am J Bot. 2007 Dec; 94(12):2059-62. View in: PubMed

  25. Ten microsatellite loci from Solms-laubachia eurycarpa (Brassicaceae). Mol Ecol Resour. 2008 Sep; 8(5):1023-5. View in: PubMed

  26. Phylogenetic inference of reciprocal effects between geographic range evolution and diversification. Syst Biol. 2011 Jul; 60(4):451-65. View in: PubMed

  27. Phylogeny and palaeoecology of Polyommatus blue butterflies show Beringia was a climate-regulated gateway to the New World. Proc Biol Sci. 2011 Sep 22; 278(1719):2737-44. View in: PubMed

  28. Tracing the temporal and spatial origins of island endemics in the Mediterranean region: a case study from the citrus family (Ruta L., Rutaceae). Syst Biol. 2010 Dec; 59(6):705-22. View in: PubMed

  29. Serpentine soils do not limit mycorrhizal fungal diversity. PLoS One. 2010 Jul 23; 5(7):e11757. View in: PubMed

  30. Correlated evolution of mating system and floral display traits in flowering plants and its implications for the distribution of mating system variation. New Phytol. 2010 Jan; 185(1):311-21. View in: PubMed

  31. Molecular phylogeny, divergence time estimates, and historical biogeography of Circaea (Onagraceae) in the Northern Hemisphere. Mol Phylogenet Evol. 2009 Dec; 53(3):995-1009. View in: PubMed

  32. Plant mating systems in a changing world. Trends Ecol Evol. 2010 Jan; 25(1):35-43. View in: PubMed

  33. Amazonian amphibian diversity is primarily derived from late Miocene Andean lineages. PLoS Biol. 2009 Mar 10; 7(3):e56. View in: PubMed

  34. A comparative study in ancestral range reconstruction methods: retracing the uncertain histories of insular lineages. Syst Biol. 2008 Oct; 57(5):693-707. View in: PubMed

  35. Maximum likelihood inference of geographic range evolution by dispersal, local extinction, and cladogenesis. Syst Biol. 2008 Feb; 57(1):4-14. View in: PubMed

  36. Evidence for a time-integrated species-area effect on the latitudinal gradient in tree diversity. Am Nat. 2006 Dec; 168(6):796-804. View in: PubMed

  37. Linking floral symmetry genes to breeding system evolution. Trends Plant Sci. 2006 Dec; 11(12):568-73. View in: PubMed

  38. Major clades of parmelioid lichens (Parmeliaceae, Ascomycota) and the evolution of their morphological and chemical diversity. Mol Phylogenet Evol. 2006 Apr; 39(1):52-69. View in: PubMed

  39. A likelihood framework for inferring the evolution of geographic range on phylogenetic trees. Evolution. 2005 Nov; 59(11):2299-311. View in: PubMed

  40. Detecting the historical signature of key innovations using stochastic models of character evolution and cladogenesis. Evolution. 2005 Feb; 59(2):257-65. View in: PubMed

  41. Heterogeneous selection on LEGCYC paralogs in relation to flower morphology and the phylogeny of Lupinus (Leguminosae). Mol Biol Evol. 2004 Feb; 21(2):321-31. View in: PubMed

  42. Obtaining maximal concatenated phylogenetic data sets from large sequence databases. Mol Biol Evol. 2003 Jul; 20(7):1036-42. View in: PubMed

  43. Step matrices and the interpretation of homoplasy. Syst Biol. 1998 Dec; 47(4):582-8. View in: PubMed